Farnesenes Isolated from the Volatile Oil of Perilla frutscens f. viridis Makino

Tsutomu Sakai and Yoshio Hirose

The Institute of Food Chemistry, Dojimanaka, Kita-ku, Osaka

(Received September 19, 1969)

Three farnesene isomers, cis- α -farnesene (I), trans- (C_{10}) - and $cis(C_{10})$ - allofarnesenes (II and III), together with β -farnesene and farnesol, were isolated from the sesquiterpene fraction of the volatile oil now obtained from *Perilla frutscens f. viridis* Makino (Ao-shiso in Japanese) for the first time.

These three hydrocarbons (I, II and III) all had the same molecular formula, $C_{15}H_{24}$ (from MS data), and the same mother skeleton, farnesane (by hydrogenation).

cis-α-Farnesene (I): IR; $\nu_{\text{max}}^{\text{film}}$ 1590, 3085, 985, 900, 1635, 830 cm⁻¹. NMR; δ^{CCI_4} 1.60, 165, 1.69 (12H, 3 s.), δ 2.00 (4H, unresolved d.), δ 2.78 (2H, t., J=7.0 Hz), δ 6.74 (1H, qua.), δ 4.95—5.25 (5H, complex m.). UV; $\lambda_{\text{max}}^{\text{EUH}}$ 238 mμ (ε=11300).

Cavill et al.1) reported the isloation and characterization of α-farnesene from Dufour's gland in the ant Aphenogaster longiceps (F. Sm.); they identified it with that from the natural coating of "Grannyl Smith" apples isolated by Huelin and Murray.2) They also showed that the \alpha-farnesene from the ant and apples has a trans-conjugated diene. The lone proton in the R-CH=CH₂ system in the αfarnesene from the ant appears as a signal centered at δ 6.3 in the NMR spectrum, and its UV absorption maximum is at 232 m μ (ε =36400). On the other hand, our a-farnesene has the following values: δ 6.73; $\lambda_{\text{max}}^{\text{EtOH}}$ 238 m μ (ϵ =11300). According to Ohloff et al.,3) the proton at C7 in the isomeric β -ocimene has a signal centered at δ 6.30 in trans- β -ocimene (IVb) and at δ 6.73 in cis- β ocimene (IVa). Moreover, they reported an UV absorption maximum at 232 m μ (ε =27600) for trans- β -ocimene and one at 237 m μ (ε =21000) for cis- β -ocimene.

Therefore, it may be concluded that α -farnesene from the ant and from apples is trans- α -farnesene (V), while that from Perilla is cis- α -farnesene (I).

trans(C₁₀)-Allofarnesene (II): IR; ν_{\max}^{film} 960 cm⁻¹. NMR; δ 1,60, 1.63, 1.79 (15H, 3 s.), δ 2.06, 2.11 (4H, 2 s.), δ 5.07—7.44 (5H, complex m.). UV; $\lambda_{\max}^{\text{EtOH}}$ 270 m μ (ε =26800), 281 m μ (ε =35700), 292 m μ (ε =26700).

cis(C₁₀)-Allofarnesene (III): NMR; δ 1.60, 1.67, 1.75 (15H, 3 s.), δ 2.05, 2.10 (4H, 2 s.), δ 5.08—6.25 (5H, complex m.). UV; $\lambda_{\text{max}}^{\text{EtOH}}$ 266 m μ (ε = 28300), 277 m μ (ε = 36700), 288 m μ (ε =29400).

Naves⁴⁾ characterized the allofarnesene obtained from the dehydration of farnesol and nerolidol; he also identified the sesquiterpene hydrocarbon isolated from ylang-ylang oil and also "sesquicitronellene" with allofarnesene. However, the allofarnesene used for the structural analysis was a mixture of trans- and cis-isomers. The spectral data of allofarnesene reported by Naves resemble those of our cis(C_{10})-allofarnesene (III). O'Connor and Goldblatt⁵) reported the UV absorption maxima at 270 m μ (ε =31319), 278 m μ (ε =39874), and 289 m μ (ε =30542) for trans(C_4)-trans(C_6)-alloocimene, and those at 265 m μ (ε =32872), 273 m μ (ε =42,871), and 285 m μ (ε =33757) for trans(C_4)-cis(C_6)-alloocimene.

Therefore, it may be concluded that the hydrocarbon II (Kovats index 1758)*1 is $trans(C_8)$ -trans (C_{10})-allofarnesene and that the hydrocarbon III (Kovats index 1783) is $trans(C_8)$ - $cis(C_{10})$ -allofarnesene.

When passed through a Carbowax 20M column operating at a high temperature,*2 cis- α -farnesene (I) isomerized quantitatively to $trans(C_{10})$ -allofarnesene (II).

¹⁾ G. W. K. Cavill, P. J. Williams and F. B. Whitfield, Tetrahedron Letters, 1967, 2201.

F. E. Huelin and K. E. Murray, Nature, 210, 1260 (1966).

³⁾ G. Ohloff, J. Seibl and E. sz. Kovats, *Liebig Ann.*, **675**, 83 (1964).

⁴⁾ Y. R. Naves, Helv. Chim. Acta, 49, 1029 (1966).

⁵⁾ R. T. O'connor and L. A. Goldblatt, Anal. Chem., 26, 1726 (1954).

^{*1} Hitachi K-53, HB-2000, 45 m×0.25 mm, 150°C/1.0 kg N₂.

^{*2} Varian 90-P, 20% Carbowax 20M-Chromosorb w, 3/8 inch×20 ft aluminium column, oven temp. 200°C, detector temp. 250°C, He carrier gas.